WIMPs with mass ~100 GeV from a pair of massless and small-mass scalar-fields in interaction

GERALD ROSEN (a)
Department of Physics, Drexel University – Philadelphia, PA 19104, USA

PACS 98.35. Ce - Galactic mass
PACS 98.90.+s - Other topics on stellar systems; interstellar medium; galactic and extragalactic objects and systems

Abstract. – It is shown that a massless scalar-field can interact with a scalar-field bearing particles of mass \(m \) to produce localized particlelike concentrations of field energy, WIMP solitons with a mass \(M \) orders of magnitude greater than \(m \). The characterizing signature features of such solitons are described, and their possible detection by ongoing observations is noted.

Tentative experimental evidence for WIMPs, Weak Interacting Massive Particles with a mass of the order 100 GeV, has been reported recently [1,2]. Conjectured to be the principal component of cold dark matter and hence about 84% of all matter, WIMPs are in striking contrast to the near-massless particles of previously considered scalar-field candidates for dark matter, fields which carry masses that range from ~10^{-22} eV [3] to ~10^{-3} eV [4]. Remarkably however, a pair of massless and small-mass scalar-fields in interaction can produce WIMP-like entities with a mass of the order 100 GeV, as shown below. Since observational evidence for self-interacting cold dark matter has been established for over a decade [5], this model for WIMPs is a viable alternative to a supersymmetry particle with WIMP properties.

Now after a century of particle-theory development, there has emerged a very large order-of-magnitude range in seemingly fundamental masses [6,7]. We have the hypothetical Planck mass \(G^{-\frac{1}{2}} = 1.22 \times 10^{19} \) GeV [8], the (probably) massless photon \((m_{\gamma} \approx 2 \times 10^{-11} \) eV), the lightest mass-state neutrino \((m_{\nu} \approx 5 \times 10^{-3} \) eV), and finally the suspect-candidate dark matter particles, conjectured to be as large as ~100 GeV [1,2], as small as ~10^{-3} eV [4], or perhaps even effectively massless at ~10^{-22} eV [3]. Nestled in between and spanning five orders-of-magnitude from the weak-interaction gauge bosons with masses ~100 GeV down to the electron with

(a) Email: gerald.h.rosen@drexel.edu or gr@geraldrosen.com
\(m_e = 0.511 \text{ MeV} \), we have the experimentally established particles. In a future fundamental theory, the masses which enter must surely bear basic theoretical relationships to one another. Hence, considerable interest is attached to field-theoretic mechanisms that may account for order-of-magnitude differences in observable particle mass. The purpose of this communication is to describe such a mechanism, which may in fact apply to WIMPs.

Consider the effective (post-renormalization) Lagrangian

\[
\mathcal{L}_{\text{eff}} = -\frac{1}{2} \left(g_{\mu\nu} \partial_\mu \chi \partial_\nu \chi + \beta \chi \phi \right) - \frac{1}{2} m^2 \chi^2 + \beta \chi \phi^3
\]

(1)

in which \(\chi \) is a real scalar-field bearing particles of mass \(m \), \(\phi \) is a massless real scalar-field, and \(\beta \) is a dimensionless coupling-constant. From (1) we obtain the field equations

\[
\partial_\mu \left(g_{\mu\nu} \partial_\nu \chi \right) = \beta \chi \phi \chi
\]

(2)

and the canonical energy density

\[
T_{00} = \frac{1}{2} \left((\chi_0)^2 + |\nabla \chi|^2 + (\phi_0)^2 + |\nabla \phi|^2 \right) + \frac{1}{2} m^2 \chi^2 - \beta \chi \phi^3
\]

(3)

Let us suppose that Eqs. (2) admit a static solution with \(\chi,0 = \phi,0 = 0 \) in an appropriate Lorentz frame, and let us seek a singularity-free solution with spherical symmetry about the point \(x = (x_1, x_2, x_3) = 0 \). The first member of (2) can be recast as the integral equation

\[
\chi(x) = \frac{\beta}{4\pi} \int \frac{\text{exp} - m|x-y|}{|x-y|^3} \phi(y) \, dy \simeq \beta m^{-2} \phi(|x|)
\]

(4)

where the last member of (4) follows approximately if and only if

\[
|\phi(|x|)/\phi(0)|^3 << 1 \quad \text{for} \quad |x| \gtrsim m^{-1}
\]

(5)

i.e, if and only if \(|\phi(|x|)/\phi(0)| \) declines from 1 to near 0 as \(|x| \) increases from 0 to become greater than \(m^{-1} \).

Then, with substitution of the last member of (4) into the second member of (2), we get the elliptic partial differential equation in the \(\phi \) field exclusively,

\[
\nabla^2 \phi + 3 \beta^2 m^{-2} \phi^5 = 0
\]

(6)

Remarkably, (6) admits the exact rigorous spherically-symmetric singularity-free soliton solution
\[\phi(x) = \pm \left(a|x|^2 + a^{-1} \beta^2 m^{-2} \right)^{-1/2} \]

(7)

in which \(a \) is a positive (dimensionless and disposable) constant of integration. We now verify \(a \) \textit{a posteriori} that for suitable values of \(a \) the solution (7) satisfies the approximation requirement (5):

\[\left| \phi(|x|)/\phi(0) \right|^3 = \left(\frac{2 \beta^2 m^{-2} |x|^2 + 1}{a^{-1} \beta^2 m^{-2}} \right)^{3/2} \ll 1 \quad \text{for} \quad |x| \gg m^{-1} \]

(8)

Indeed, (8) holds if and only if

\[|\beta| \ll a \]

(9)

Since the approximate radial size of the solution (7) is given by \(\hat{r} = a^{-1} |\beta| m^{-1} \), (9) states that radial size is sub-Compton, \(i.e. \), small compared to \(m^{-1} \). The total field energy mass of the soliton (7) follows from (3) and (4) as

\[M \equiv \int T_{00} \frac{3}{2} m_{f} \beta \]

(10)

with terms combining inside the integral, the subsequent integration being exact, and the constant of integration \(a \) scaling out. Hence, for \(|\beta| \ll 1 \) we have obtained solitons with a mass \(M >> m \) (while conversely, for a superstrong coupling with \(|\beta| >> 1 \), we obtain \(M << m \)). It can be shown by long-established classical-field analysis that for all magnitudes of \(|\beta| \) and \(a \) these solitons are anti-Coulombic, with like-sign solutions (7) attracting each other and unlike-sign solutions repelling each other [9]. The mass relation (10), the variable radial size feature of the solitons (with \(a \) disposable and \(\hat{r} = \pi^2/4aM \)) and their anti-Coulombic character may provide an identifying signature for them. In particular, if dark matter WIMPs with \(M \sim 100 \text{ GeV} \) interact with terrestrial matter to afford detection by the most advanced signature-determining \textit{CDMS II} apparatus [10], and if they show the latter soliton signature features, then such WIMPs may derive from interaction between a pair of massless and small-mass dark matter scalar-fields, such as those conjectured on the basis of cosmological observations [3,4].

In summary, it has been shown that a massless scalar-field can interact with a scalar-field bearing particles of mass \(m \) to produce localized particlelike concentrations of field energy, \textit{solitons} with a mass \(M \) orders of magnitude greater than \(m \). The characterizing signature features of such solitons have been described, and such signature features may show up in the ongoing \textit{CDMS II} observations [10]. If so, WIMPs with \(M \sim 100 \text{ GeV} \) may be solitons that follow from the \(\chi \) and \(\phi \) fields, as derived rigorously here from the effective Lagrangian (1).
REFERENCES

