price of a 20 by 50 in. sheet, 10 mil in thick-
ness, is $1.50.

5. Microscope for observing and counting
tracks. This can be of very modest quality for the
experimental work described here. We find the
low cost Polaroid model ED-10 camera attach-
ment to be a valuable accessory for making
permanent records of the tracks observed at
various stages of the etching process. The price
of the ED-10 is $59.95.

VI. CONCLUSIONS

We have shown that the technique of observ-
ing charged particle tracks in solids is well within
the capability of even the most modest nuclear
laboratory. In addition to providing a new tool
for the specialist, the technique illustrates a
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number of fundamental aspects of the interaction
of radiation with matter and thus is of consider-
able pedagogic interest.
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The Galilean invartance of nonrelativistic lows s
reviewed with particular attention given to the trans-
formation properties of field-theoretic quantities. It 1is
then shown that Galilean-invariant nonrelativistic laws
generally manifest o broader covariance, the laws retaining
their form under coordinate transformations to noninertial
frames which move with arbitrary accelerative translational
motion (without rotation) with respect to inertial frames.

1. INTRODUCTION

This paper presents a self-contained and
concise review of the Galilean invariance of non-
relativistic laws, with particular attention given to
the transformation properties of the dependent
variables in field equations.! It is then shown by
the study of examples that Galilean-invariant
nonrelativistic laws generally manifest a broader
covarianee; namely, such equations generally
retain their form under coordinate transformations
to noninertial frames which move with arbitrary
accelerative translational motion (without rota-
tion) with respect to inertial frames. A non-
relativistic precursor to the fundamental covari-
ance property of physical laws in Einstein's
general relativity, the nonrelativistic covariance
can often be exploited to facilitate the solution of
nonrelativistic field equations.

2. GALILEAN INVARIANCE

The nonrelativistic physics of Galileo and
Newton is applicable to physical motion involving
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material velocities small in absolute magnitude
compared to the speed of light, and it is postulated
that the basic laws of nonrelativistic physics take
the same form in all inertial frames of reference.
By definition, an “inertial frame” is one which
moves with a constant velocity relative to the
“fixed” (i.e., distant) stars. Both space and time
are assumed homogeneous, and space is also
assumed isotropic. Hence, inertial frames with
Cartesian spatial coordinates are related by
transformations of the form

X =x+o (homogeneity of space), (2.1)
{'=t+48 (homogeneity of time), (2.2)

o =pix;  [pwpin=04j det(piy) =+1]
(isotropy of space), (2.3)

where the components of e, 8, and p;; are real
constant parameters. Moreover, a frame of refer-
ence which moves with constant velocity relative
to an inertial frame is, by definition, an inertial
frame, and thus inertial frames of reference with
Cartesian spatial coordinates are related by the
so-called pure Galilean transformations?:

X' =x-++yt, t=t (relativity principle

of Galileo and Newton),

(2.4)

where the components of y are real constant
parameters. Relating all inertial frames with
Cartesian spatial coordinates, a general combina-
tion of the transformations (2.1)-(2.4) provides
a generic element of the 10-parameter Galilean
Lie group® [three independent real parameters
being required for the proper rotation matrix
(pi;) ] Galileo’s principle of inertia (Newton’s
first law of motion), asserting that a point-mass
particle maintains a constant velocity with
respect to an inertial frame if no external forces
act on the particle, is a Galilean-invariant physical
law, in the senge that if the principle holds in an
inertial frame then it will hold in any other inertial
frame by logical implieation.

Newton’s gravitational theory for the motion of
n point-mass particles is the prototype of a
Galilean-invariant physical theory. In an inertial
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frame we have the Lagrangian for the theory
prescribed as

7= %Em,»[f{(“ > MM
t=1

S| @)
in which x® = (2,9, 2,9, 2;9) denotes the Car-
tesian spatial coordinates of the ¢th particle, m;,
denotes the mass of the 7th particle, and G=
6.67 X 1078 em?/g-sec? is the universal gravitational
constant. The Lagrangian (2.5) is obviously
invariant under inertial frame transformations
(2.1)-(2.3), with primed variables simply replac-
ing the x®’s and ¢, while under inertial frame
transformations (2.4) we find

L=I4 Zm(y 043 yP)
=1

-1+ (; m(yxO+} | y 1%)) .28

Because L’ differs from L simply by a total time
derivative, the KEuler-Lagrange equations of
motion derived from (2.5),

XD 4@ 3 [mij(x® —x@) /| 0 —x@ [5]=0,

Fad)

(2.7)

are invariant in form or covariant under Galilean
transformations, Eqs. (2.7) assuming the same
form (with primed variables simply replacing the
x@’g and t) for all inertial frames of reference. In
fact, Eqs. (2.7) are covariant under an 11-
parameter Lie group obtained by adding to the
10-parameter transformations of the Galilean Lie
group the space—time scale dilatations of the form?

x’ =N,

1 =A%, (2.8)
where A is a positive real constant parameter.
Finally, we note that the Lagrangian (2.5) and
equations of motion (2.7) are invariant under two
discrete transformations, namely, space inversion
with x’= —x and time reflection with ¢'= —t¢.
Galilean invariance is generally featured by
nonrelativistic classical field theories which do not



tacitly involve a fixed frame of reference.® As an
example, consider the fluid dynamical equations
for compressible flows,

(8u/at) +u- vu—yViu+p'VP—g=0, (2.9a)
(0p/0t) +u-Vo+pV-u=0, (2.9b)
(86/3t) +u- vo— DV =0, (2.9¢)

where u is the flnid velocity field, p is the density
field, P is the pressure field, 8=0(p, P) is either
specific entropy or temperature, g is the gravita-
tional force per unit mass (possibly dependent on
x and ¢t), and », D are diffusivity constants.
Equations (2.9) are obviously invariant under
inertial frame transformations (2.1) and (2.2)
with u/=u, p'=p, P’=P, and ¢'=g, because
the space—time coordinates only appear explicitly
in the differential coefficients. The Cartesian
veetor quality of (2.9a) and scalar quality of
(2.9b) and (2.9¢) guarantee that the equations are
covariant under inertial frame transformations
(2.3) with u/=psu; p'=p, P'=P, and g’ =p.g;.
In the cage of pure Galilean transformations (2.4),
we have the chain-rule formulas

v'=v, (a/at’y=1{(a/ot) —y-V, (2.10)
with V' understood to be taken at constant ¢’ and
9/0t’' understood to be taken at constant x’. Since
a velocity field u must transform like dx/dt in
particle mechanics, it also follows from (2.4) that

u' =u+ty, (2.11)

and hence with (2.10) we find the relation

(6/8t)y4+u'-V'=(9/dt) +u-v. (2.12)
The latter transformation formula makes it
evident that Eqs. (2.9) are covariant under the
pure Galilean transformations (2.4) with p'=p,
P'=P, and g'=g. Thus, the dynamical equations
(2.9) for compressible fluid flows assume the
same form in all inertial frames of reference.
Although Egs. (2.9) are covariant under space
inversion with x’=—x and the dependent vari-
ables transforming appropriately, these dynami-
cal equations are not covariant under time
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reflection nor under any preseribed space—time
scale dilatations analogous to (2.8).

Galilean invariance is also featured by non-
relativistic quantum equations of motion. As an
example, consider the Schrédinger equation for a
spinless particle,

[%(3/08) + (R/2m) VP — V¢ =0, (2.13)

where ¢ is the complex-valued wave function,
V=V(x,t) is a prescribed (real scalar) potential
energy associated with the particle, m is the
particle mass constant, and #%=1.0545X10"%
g-cm?/sec is the universal quantum constant. The
invariance of Eq. (2.13) under inertial frame
transformations (2.1)-(2.3) 1is obvious with
Y'=¢ and V'=V. For pure Galilean transforma-

tions (2.4), we seek a transformation law of the
form

Y =ety, (2.14)
where ¢=¢(x, ¢, ¥) is a real phase function such
that ¢(x, ¢, 0)=0. With (2.14), the chain-rule
formulas (2.10), and the physical requirement that
the potential energy be the same in all inertial
frames, V'=V, we find that

¢=(m/R) (y-x+5 |y ['1) (2.15)

ag a consequence of the required covariance,

[ih(a/0t') + (A2/2m) V2=V ' =0. (2.16)
It is the physical admissibility of the transforma-
tion formula (2.14), (2.15) which guarantees that
Schrodinger’s equation (2.13) assumes the same
form (2.16) in all inertial frames of reference.
To elucidate the physical admissibility of the
transformation formula (2.14), (2.15), let us
recast the Schrodinger equation (2.13) into an
equivalent system of pseudofluid dynamical
equations,’

(du/dt) +u- vutm vV
— (1/2m7) ¥ (V) =0,

(8p/0t) +u-Vo+pV-u=0 (2.17)
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involving the real variables

u= (7i/2im) (YL Vy —*1vy*),
p= |y P=y*y.

(2.18)
(2.19)

The transformation law (2.14), (2.15) for the
wave funection is such that the “electron fluid
velocity” (2.18) transforms according to (2.11),
while the “electron fluid density” (2.19) is the
same in all inertial frames, p’ =p. It is interesting
to note that (2.13) and the equivalent system of
equations (2.17) are invariant under space inver-
sion and time reflection, with ¢’=¢* in the case of
the latter, but covariance under space—time scale
dilatations is not a feature of the Schrodinger
equation for general V.

3. THE GENERAL COVARIANCE OF
NONRELATIVISTIC LAWS

. Kinstein’s prineiple of equivalence’ removes the
preferential status given to inertial frames of
reference in the physiecs of Galileo and Newton.
For a mass—point particle acted upon by a non-
gravitational as well as by a gravitational force
field in an inertial frame, Newton’s equation of
motion takes the form

mx=F+mg, (3.1)
where m denotes the particle mass constant, F
denotes the nongravitational force, and g denotes
the gravitational force per unit mass. It follows
from (3.1) that for a uniform gravitational field
with g identically constant, gravitational effects
disappear in a uniformly accelerating frame of
reference with the Cartesian spatial coordinates
x'=x—1fg. Furthermore, Eq. (3.1) retains its
form in the coordinates
X'=X+f(t); t’=t, (32)
of any frame of reference which moves with
arbitrary accelerative translational motion (with-
out rotation) with respect to inertial frames if the
gravitational foree per unit mass transforms as

g'=g+i®). (3.3)

In Eqgs. (3.2) and (3.3), £(f) denotes an arbitary
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twice-differentiable vector function of time. Mani-
fested in an obvious fashion by Eq. (3.1), this
covariance is featured by all Galilean-invariant
nonrelativistic laws, asg illustrated by example
below, and represents an important natural
extension of Galilean invariance with the co-
ordinate transformation formula (3.2) superseding
(2.1) and (2.4).8 A general combination of the
transformations (2.2), (2.3), and (3.2) provides
a generic element of an infinite-dimensional Lie
covariance group with the three components of
£(t) arbitrary twice-differentiable functions of
time.

Consider the covariance under (3.2) of the
fluid dynamical Eq. (2.9) for compressible flows.
From (3.2) we obtain the chain-rule formulas

V=V,

(8/3t") = (3/0) —€()- Vv  (3.4)

and the transformation law for a velocity field

u'=u+t¥(), (3.5)
and thus the transformation formula (2.12) is
valid for all £(¢). Hence, with (2.12), (3.3), (3.5),
p’'=p, and P’=P, it is evident that Eqs. (2.9) are
covariant under the transformations (3.2), the
dynamical equations (2.9) for compressible fluid
flows assuming the same form, with the gravita-
tional force per unit mass transforming according
to (3.3), in all frames which move with arbitrary
accelerative translational motion with respect to
inertial frames. In particular, if g is independent
of x, the transformed gravitational force per unit
mass (3.3) vanishes for #(¢) such that (¢) = —g,
and hence buoyancy forees do not appear in such
suitably prescribed accelerative frames of refer-
ence.?

Consider the covariance under (3.2) of the
Schrodinger equation (2.13) for a spinless particle.
With the generalized form of the transformation
law (2.14), (2.15),

Y= [exp (%"—)(szr % fo t | |2dt)] ¥, (3.6)

the chain-rule formulas (3.4), and the principle of
equivalence’ requirement

V'=V—mi-x, (3.7)



it follows that (2.16) is a formal consequence of
(2.13) for all £(¢). Thus, the Schrodinger Eq.
(2.13) is covariant under the transformations
(3.2) with the wave function and potential energy
transforming according to (3.6) and (3.7). This
covariance of the Schrodinger equation under
coordinate transformations to noninertial frames
which move with arbitrary accelerative trans-
lational motion can be utilized to solve certain
time-dependent potential problems in quantum
mechanics.?

* Work supported by a National Science Foundation
grant.
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